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A quantum-mechanical derivation is presented for the dispersion of surface polaritons on polar materials. We
do not assume a local dielectric function exists at the surface of the solid. We introduce quantum operators for
the phonons �or excitons� and photons, and couple them in the Coulomb gauge. We derive and solve the
equations of motion of these coupled oscillators. We find two solutions. One is the surface polariton that agrees
with the classical result of Fuchs and Kliewer. The other is a new surface polariton that exists at the frequency
of the bulk longitudinal phonon. We also prove that these are the only two solutions. We also find exactly the
polarization in the solid from a static external charge, and show that it is not given by surface polaritons.
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I. INTRODUCTION

We present a derivation of surface polaritons using quan-
tum mechanics. Surface polaritons are surface modes that are
a mixture of polariztion modes of the solid and electromag-
netic modes. All previous derivations are classical and derive
that the surface polaritons are given by1

�2 =
�2

c2

����
���� + 1

, �1�

where ���� is the dielectric function of the material and ��
= �kx ,ky ,0� is the wave vector along the surface. When we
solve for the modes using quantum mechanics, we derive the
same equation for the dispersion. We also find another
surface-polariton mode that exists at the frequency of the
longitudinal-optical phonon. Finally, we put a fixed, static
charge q outside of the surface of the polar solid. We calcu-
late exactly the polarization induced by this charge and show
it gives the classical image theory exactly. The image charge
polarization is not related to surface polaritons. This conclu-
sion disagrees with the standard belief that image charges are
caused by surface polaritons.2

A charged particle outside of a solid surface interacts with
the surface polaritons of the solid. Our solution using quan-
tum mechanics has a different interaction than the one found
using classical physics.2–10 Although the original theory is
old, it is presently used to discuss scattering of electrons in
carbon and graphene when lying on a polar substrate.11–14

We follow the method of Hopfield,15 who first quantized
bulk polariton modes in 1958. He introduced quantum opera-
tors for both the photon field, and the phonon �or exciton�
field, and solved the coupled oscillator problem. He found
for bulk polaritons the dispersion,

k2 =
�2

c2 ���� �2�

which is also the equation found classically. Here k�
= �kx ,ky ,kz� is the three-dimensional wave vector of the po-
lariton. One difference between the classical and quantum
derivations is that the classical derivation assumes the dielec-
tric function ��k ,�� is entirely local ���� and can be applied
at atomic distances. We do not make this assumption. One
goal of this derivation is to derive the dispersion of surface

polaritons without making any assumptions about dielectric
functions. The present result is an extension of our earlier
calculation.2

The present calculation is limited to phonons in polar in-
sulators. That is a simple and transparent model. A similar
calculation could be done for the surface plasmons in a metal
but that calculation is harder since the plasma oscillations are
not represented by simple harmonic oscillators. There is
much interest in the energy loss of charged particles outside
metal and polar surfaces, from the interaction with the modes
of the solid. Some simple models for this interaction were
written down years ago.4,6–8 The present calculation shows
these earlier models are not rigorous.

II. HAMILTONIAN

We start with a Hamiltonian that contains the photons, the
phonons, and the phonon-photon interaction,

H = H0t + H0n + V . �3�

We employ the Coulomb gauge.16 We treat each of these
terms in detail.

The first term is the photon Hamiltonian H0t which is
conventionally written in terms of raising �ak�

† � and lowering
�ak�� of the vector potential A�r , t�,

H0t = �
�k

��k�ak�
† ak� +

1

2
� , �4�

1

c
A��r� = �

k�

CkAk����k��eik·r, �5�

Ck =�2	�


�k
, Ak� = ak� + a−k�

† , �k = ck . �6�

The subscript �= �x ,y ,z� is spatial direction while �= �1,2�
denotes possible polarization directions of the photons. The
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volume of the system is 
. We are going to treat this prob-
lem as two coupled harmonic oscillators. We need to rewrite
the above results in terms of momentum and amplitude for
the photon field,

Ak� =� �

2�k
Ak�, �7�

�k� = − i���k

2
�ak� − a−k�

† � , �8�

�Ak�,�k���� = i��k,−k�����, �9�

H0t =
1

2�
k�

��k��−k� + �k
2Ak�A−k�� , �10�

1

c
A��r� =�4	



�
k�

Ak����k��eik·r. �11�

Since A��r� is Hermitian then ���−k ,��=���k��. The pho-
non Hamiltonian is

H0n = �
j
� Pj

2

2M
+

K

2
Qj

2� . �12�

We assume a cubic crystal with neutral molecules. The mol-
ecule has an infrared-active phonon �0, which is the feature
of principle interest. The phonon collective modes will be
expanded in a layer geometry with operators b�,l, b−�,l

† , and l
labels the layer,

Q�,l,� =� �

2M�0
�b�,l,� + b−�,l,�

† � , �13�

P�,l,� = − i��M�0

2
�b�,l� − b−�,l,�

† � , �14�

�Q�,l,�,P��,l�,
� = i���,−���ll���
, �15�

H0n =
1

2M
�

�,�,l
�P�,l,�P−�,l,� + M2�0

2Q�,l,�Q−�,l,�� . �16�

The surface polaritons for these phonons were originally pre-
dicted by Fuchs and Kliewer.17,18

There are three interaction terms. The first is from the
usual p .A interaction. The infrared-active mode has an effec-
tive charge of e and makes a dipole moment of eQ� j. Another
is an A-squared term. There is also the dipole-dipole interac-
tion from the Coulomb interaction. The three interaction
terms are

V1 = −
e

Mc
�

j

P� j · A� �R j� , �17�

V2 =
e2

2 �
ij,�


Qi���
�Rij�Qj
, �18�

V3 =
e2

2Mc2�
j

A�R j�2, �19�

��
�R� =
��


R3 − 3
R�R


R5 . �20�

The volume of the system is 
=NxyLA0, where A0 is the area
per unit cell in the layer, Nxy is the number of molecules in
each layer, and L is the length in the z direction. We also
introduce the volume of a unit cell 
0=A0a, where a is the
lattice constant between layers and the ion plasma frequency,

�i
2 =

4	e2


0M
. �21�

The three-dimensional photon wave vector is k= ��� ,kz�. In
terms of these new constants, the interaction terms are

V1 = − �i� a

M �
�,l

D� �,l · P� −�,l, �22�

D�,l,� =
1
�L

�
kz,�

���k��Ak�eikzal, �23�

V2 = −
M�i

2

2 �
�,l,l�,�


Q�,l,�S�
��,l − l��Q−�,l�,
, �24�

V3 =
�i

2a

2 �
�,l

D� �,l · D� −�,l, �25�

S�
 = 	l = l�
1

3
d�


l � l�
a

2�
e−�a
l−l�
�q�

−q

−��l − l�� + q�

+q

+��l� − l��� ,

�26�

� = akz, d�
 = ��
�1 − 3��z�, q�
� = i�� � ���z,

�27�

where a is the lattice constant in the ẑ direction. The vector ��
is in the �x ,y� plane so that �� is nonzero whenever �
= �x ,y�. The quantity S�
 is the two-dimensional Fourier
transform of the instantaneous dipole-dipole interaction. Ear-
lier we evaluated2 the two-dimensional Fourier transform of
the retarded dipole-dipole interaction,
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T�
��,l − l�� = 	l = l�
1

3
d�


l � l�
a

2p
e−pa
l−l�
���


�2

c2 + ��
−�


−��l − l�� + ��
+�


+��l� − l�
� ,

p = ��2 − �2/c2, ��
� = i�� � p��z. �28�

The two Fourier transforms are equal if c→�.
The phonon system has a transverse phonon ��T�, a lon-

gitudinal phonon ��L�, and a surface phonon ��S� given by

�T
2 = �0

2 −
1

3
�i

2, �L
2 = �0

2 +
2

3
�i

2, �S
2 = �0

2 +
1

6
�i

2.

�29�

The dielectric function is

���� = 1 +
�i

2

�T
2 − �2 =

�L
2 − �2

�T
2 − �2 . �30�

Using this dielectric function in Eq. �1�, the classical theory
of the surface polariton has the dispersion,

�2��� =
1

2
��L

2 + 2c2�2 − ���L
2 + 2c2�2�2 − 8c2�2�S

2� .

�31�

One of our quantum solutions has the same dispersion rela-
tion. The eigenfunction has the form exp�−�al�, where �
=��2−�2���� /c2. Using the dispersion relation in Eq. �1�,
one can show

p2�2 = �4 −
�2

c2 ��2�� + 1� −
�2

c2 �
 = �4, �32�

p� = �2 �33�

which is useful later.
Another expression is the electrostatic potential outside of

the crystal surface �z�0�,

��r� = �
j

ejQ� j · �� j
1


R j − r

�34�

=�
�

2	e

A0��N�

ei�� ·��+�zL , �35�

L = − �
l,�

Q�,l,�q�
+e−�al. �36�

This expression is useful once we determine Q�,l,�. A current
of particles outside of the surface can also interact with the
substrate through the vector potential.

III. EQUATIONS OF MOTION

Let O denote one of the four operators A ,� , P ,Q. They
obey an equation of motion,

�

�t
O =

i

�
�H,O� �37�

which produces the following four equations:

�

�t
Ak� = �k�, �38�

�

�t
�k� = − �k

2Ak� +
a
�L

�
l

��̂�k�� · F� �,l�e−i�l, �39�

M
�

�t
Q�,l,� = P�,l,� − �i

�MaD�,l,� =
�Ma

�i
F�,l,�, �40�

�

�t
P�,l,� = − M��0

2 −
�i

2

3
d��
Q�,l,� + M�i

2 �
l��l

S�
Q�,l�,
,

�41�

F�,l,� = �i� 1

Ma
P�,l,� − �i

2D�,l,�. �42�

Take another time derivative of Eq. �38�,

Äk� = �̇k� = − �2Ak� �43�

and combine it with Eq. �39�. The first two equations can be
combined to give

Ak� =
a
�L

1

�k
2 − �2�

l

�̂�k�� · F� �,le
−ikzal, �44�

D�,l,� = �
l�,


G�
�l − l��F�,l�,
, �45�

G�
�l� = a� dkz

2	c2eikzal��
�kz
2 + �2� − k�k


�kz
2 + p2��kz

2 + �2�
. �46�

The result for G�
�l� is

G�
�0� =
1

2pc2���
�z −
���
 − �2��
z

��� + p� 
 , �47�
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G�
�l�l�0 =
1

�2 �T�
�l� − S�
�l�� . �48�

The equations with l�= l all have a denominator with Mc2

which makes these terms negligible. These terms are omit-
ted. The retarded interaction from photons does not affect the
dipolar interactions within a single plane. So we get

D�,l,� =
1

�2 �
l��l,


�T�
�l − l�� − S�
�l − l���

�� �i

�Ma
P�,l�,
 − �i

2D�,l�,

 .

Take another time derivative of the above equation, and also
Eq. �40� which gives

Ṗ�,l,�

M
= − �2Q�,l,� + �i� a

M
Ḋ�,l,�, �49�

Ḋ�,l,� =
1

�2 �
l��l,


�T�
�l − l�� − S�
�l − l���

�� �i

�Ma
Ṗ�,l�,
 − �i

2Ḋ�,l�,

 . �50�

Substitute Ṗ from the top equation into the lower one. The

factors of Ḋ cancel from the right-hand side,

Ḋ�,l,� = − �i�M

a �
l��l,


�T�
�l − l�� − S�
�l − l���Q�,l�,
,

�51�

Ḟ�,l,� = − �i�
2�M

a
Q�,l,�. �52�

Put this result back into Eq. �49�. The resulting equation is
used for the left-hand side of Eq. �41�. The terms with S�


cancel. The final eigenvalue equation is

�2Q�,l,� = ��0
2 −

1

3
�i

2d��
Q�,l,� − �i
2 �

l��l,


T�
�l − l��Q�,l�,
.

�53�

The only interaction between layers is the retarded interac-
tion T�
.

IV. SOLUTIONS: SURFACE POLARITONS

We search for solutions to Eq. �53�. Surface modes have a
dependence on layer index of exp�−�la�, where a is a lattice
constant and � is a function of ��� ,��. The theory seems to
have three possible choices of � :� , p ,�. Below we prove
that these are indeed the only possible choices. We start by
giving the two physical solutions to Eq. �53�.

A. Surface-polariton mode

The Fuchs-Kliewer surface polariton has the
eigenfunction,2,17,18

Q�,l,� = QS��
−e−�al. �54�

In doing the summations over l, we assume at small wave
vector that

�
l=0

�

e−�la =
1

1 − e−�a �
1

�a
, �55�

where � is combinations of �� , p ,��. The summation in the
eigenvalue equation gives

�
l��l,


T�
Q�,l�,
 = − QS��
+ p

� + p
e−�al, �56�

��
� = �i��, �

�2

p
� . �57�

The eigenvalue equation is

�2Q�,l,� = �0
2Q�,l,� − �i

2QSe−�al��, �58�

�� =
1

3
d����

− −
p

� + p
��

+ . �59�

The expression for �� is a bit complicated. In evaluating this
expression, we assume that it is the surface polariton and
therefore obeys ��=C��

− The two component equations are

Ci�� = i���1

3
−

p

� + p
� , �60�

− Cp =
2p

3
−

�2

� + p
. �61�

A bit of algebra shows that this can only be obeyed if p�
=�2. In this case,

�� = −
2p2 − �2

3�p2 + �2�
��

− , �62�

�2 = �0
2 +

�i
2

3
� c2�2 − 2�2

2c2�2 − �2� . �63�

Solving this equation for �2��� does produce exactly the
surface-polariton dispersion given earlier in Eq. �31�. Equa-
tion �54� is the correct eigenfunction for surface polaritons.
One can also solve the above equation for �2 and find

c2�2 = �2 �L
2 − �2

2��S
2 − �2�

= �2 �

� + 1
�64�

which is Eq. �1�. This mode produces an external potential.
From Eq. �36�,

L = − QS
��− · q+�
a�� + ��

= QS
��� + p�
a�� + ��

= QS
p

a
, �65�

where we use �p=�2 in deriving the last identity.

B. Longitudinal surface modes

We have found another solution. There is a surface pho-
non with the longitudinal frequency. This result appears to be
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distinct. There are many longitudinal phonons in the bulk of
the crystal but having one localized at the surface is unusual.

The solution starts with

Q�,l,� = Q1��
−e−�al + Q2��

−e−pal, ��
− = �i��,− �� . �66�

The summation gives

2 �
l��l,


T�
�l − l��Q�,l�,
 = − Q1e−�al���
+ + ��

−�

+ e−pal�Q1��
− − Q2��

+� .

The eigenvalue equation is obtained after some algebra,

�2Q�,l,� = �L
2Q�,l,� +

QT�i
2

2
e−pal��

− , �67�

QT = Q1 + Q2. �68�

The only way to eliminate the term with ��
− is to set QT=0

which gives �=�L. Since ���L�=0 then �=� and ��
− =q�

−.
The longitudinal-mode eigenfunction is

Q�,l,� = Q1�q�
−e−�al − ��

−e−pal� . �69�

This new surface polariton is a distinct result. It also exists in
a nonrelativistic solution �where c→��. In fact, one can

show that D�,l,�=0=Ḋ�,l,� and photons are not involved, it is
truly a longitudinal solution of Maxwell’s equations.

This mode has a zero potential outside of the surface.
From Eq. �36�, we get

L = −
Q1

a
� �q− · q+�

2�
−

��− · q+�
p + �


 = 0. �70�

Earlier we showed2 that bulk longitudinal modes also have
zero field outside of the surface.

It would be interesting to try to measure this new surface
polariton experimentally. Such a measurement would be dif-
ficult at long wavelength, using a probe such as Raman scat-
tering since it is degenerate with a volume mode of the same
frequency. However, this mode is a function of wave vector,
and could be distinguished from the volume mode at larger
values of wave vector. Note that the present derivation has
been done at long wavelength and has neglected all terms of
order O��a�. So we have not yet calculated its wave-vector
dependence.

C. General solution

Next we explore other solutions by assuming a general
form

Q�,l,� = Qt�
−e−�al, t�

− = �i��,− �� , �71�

where �� ,�� need to be determined. The summation gives

2 � TQ = −
p − �

� − p
��

−e−pal − e−�al�� − p

� − p
��

− +
� + p

� + p
��

+
 .

�72�

For the moment, ignore the first term with exponent exp�
−pal� and solve for the second term. Write it as Eqs. �58� and
�59� which again gives two equations for C,

Ci�� = i���1

3
−

p2 − ��

�2 − p2 � , �73�

− C� =
2�

3
+

�2�� − ��
�2 − p2 . �74�

Solving these two equations gives

0 = �� − ����2 − ��� . �75�

There are two possible solutions. The first has �=�. This
solution gives �2=�L

2 and is the surface polariton at the lon-
gitudinal optical frequency. In this case, �=� so there are
only two possible exponents, which combine to eliminate the
term with exponent exp�−pal�.

The other solution has �=�2 /� which has an eigenvalue
equation,

�2 = �0
2 − �i

2�1

3
−

�2 − p2

�2 − p2
 . �76�

One can solve this equation for �2 which gives that �2=�2

and �= p. The equation �p=�2 is the dispersion relation for
the Fuchs-Kliewer mode. When �= p, the prefactor vanishes
for the term with an exponent of exp�−pal�. Thus, the most
general solution gives only two solutions, which are the two
discussed above.

Another choice for the prefactor is t�= �ky ,−kx ,0� which
has the feature that it is perpendicular to all of the other
prefactors we have used,

0 = t · q�, 0 = t · ��, 0 = t · ��. �77�

We could not find a self-consistent solution for a surface
mode with this prefactor.

V. ELECTRIC FIELD

The electric field contains the time derivative, the vector
potential, which in our notation is proportional to �k�. Our
solution gives for this quantity,

�k� =
a
�L

1

c2k2 − �2���
�̂�k�� · ��

l

Ḟ� �,le
ikzz� �78�

=−
�i�

2

c2k2 − �2���
�aM

L
�̂�k�� · ��

l

Q� �,le
ikzz� ,

�79�

where we used Eq. �52� to derive the last identity.
In order to discuss the electric field from a surface wave

with wave vector �� , we construct a function such as

Ḋ�,��z� =
1
�L

�
kz,�

���k���k�e−ikzz. �80�

This function is Ḋ�,l,� when z= la. However, now our interest
is outside the surface where z�0. Insert Eq. �79� into Eq.
�80� and evaluate the summation over kz,

Ḋ�,��z� = − �i�
2�M

a
�
l,


G�
�z − al�Q�,l,
 �81�

THEORY OF SURFACE POLARITONS AND IMAGE… PHYSICAL REVIEW B 81, 195318 �2010�

195318-5



=− �i�M

a �
l,


�T�
�al − z� − S�
�al − z��Q�,l,
. �82�

The electric field has the vector potential term and a scalar
potential term. Both terms contain the factor of S�
 and can-
cel. One is left with only the retarded interaction,

E���z� = �i�4	M

a

ei�� ·��+pz�

l,

T�
�al�Q�,l,
. �83�

This interaction agrees with the classical answer. It is zero
for the surface polariton at the longitudinal frequency.

VI. STATIC IMAGE POTENTIAL

Now consider the potential from a static charge q located
outside the surface at the point rq= �0,−d�. Classical electro-
magnetic theory predicts the potential energy outside of the
surface is

��r� = q� 1


r − rI

−

� − 1

� + 1

1


r + rI


 . �84�

We wish to derive this result using our microscopic model.
The first term in brackets in Eq. �84� is the source potential.
Using the two-dimensional Fourier transform of the charge-
dipole interaction in Eq. �36� gives an interaction potential,

Vq =
2	eq

A0
�Nxy

�
�� ,l,�

q�
−Q−�,l,�

�
ei�� ·��−��d+al�. �85�

This term is added to the Hamiltonian. Redo the equations of
motion. Since the image potential is static, all time deriva-
tives are set equal to zero. This makes all variables except
Q�,l,� be zero �0= P�,l,�=Ak�=�k��. One must then solve
the equation for Q�,l,� for each value of wave vector,

0 =
2	eq

A0M��Nxy

q�
−e−��d+al� + ��0

2 −
�i

2

3
d��
Q�,l,�

− �i
2 �

l��l

S�
Q�,l�,
. �86�

Since the source term has the factor of q�
−exp�−�al�, we try

this as a solution,

Q�,l,� = QIq�
−e−�al. �87�

The sum gives

�
l�,


S�
�l� − l�Q�,l�,
 = −
1

2
QIq�

+e−�al. �88�

The terms with a prefactor of �i
2 are

− QI�i
2e−�al�1

3
d��q�

− −
1

2
q�

+
 =
q�

−

6
QI�i

2e−�al. �89�

Then Eq. �86� gives

0 =
2	eq

A0M��Nxy

q�
−e−��d+al� + �S

2QIq�
−e−�al, �90�

QI = −
2	eq

A0M�S
2��Nxy

e−�d �91�

=−
qa

e��Nxy

� − 1

� + 1
e−�d, �92�

where the dielectric functions are evaluated at zero frequency
��0�=�L

2 /�T
2. This solution is used to calculated the potential

it generates outside of the surface �z�0�. The quantity L is

L = − QI�
l�

�q+ · q−�e−2�al =
�

a
QI, �93�

��r� = −
q


r + rI

�� − 1

� + 1
� . �94�

This is the correct potential term from the image charge out-
side of a dielectric surface.

Note that the induced polarization inside of the solid sur-
face is given by Eq. �87�. That is not the eigenfunction of a
surface polariton. The idea that image potentials are caused
by surface polaritons is incorrect. That idea is okay if one
neglects retardation by setting the speed of light to infinity.
However, when solving for the image potential using a cor-
rect relativistic formulation, as we have done here, the sur-
face polaritons are not the polarization that induces the im-
age potential.

VII. DISCUSSION

We have solved the quantum-mechanical problem of cou-
pling between photon fields and phonon fields, near the sur-
face of a polar dielectric. We have found two kinds of sur-
face polariton. One is the Fuchs-Kliewer mode predicted
many years ago.17,18 There have been a few measurements of
the dispersion of surface polaritons at very small wave
vectors19–22 using attenuated total reflection. The measure-
ments have approximate agreement with the classical theory.

The second solution is a surface polariton at the frequency
of the bulk optical phonon. This mode has not been previ-
ously predicted or discovered experimentally. It does not
couple to charged particles outside of the surface and would
be difficult to detect experimentally.

We have used this model to calculate the image potential
induced by a fixed, static charge outside of the surface. We
derived exactly the induced polarization inside of the solid
surface, and found that it is not given by either surface po-
lariton. The idea that surface polaritons cause image charges
is not rigorously correct.
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